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Three Categories of Solutions

Gumbel-softmax

• [Matt J. Kusner, et al., arXiv, 2016][Weili Nie, et al.  ICLR, 2019]

Continuous Input for Discriminator

• [Sai Rajeswar, et al., arXiv, 2017][Ofir Press, et al., ICML workshop, 2017][Zhen 
Xu, et al., EMNLP, 2017][Alex Lamb, et al., NIPS, 2016][Yizhe Zhang, et al., ICML, 
2017]

Reinforcement Learning

• [Yu, et al., AAAI, 2017][Li, et al., EMNLP, 2017][Tong Che, et al, arXiv, 
2017][Jiaxian Guo, et al., AAAI, 2018][Kevin Lin, et al, NIPS, 2017][William 
Fedus, et al., ICLR, 2018]



Gumbel-softmax

Source of image: 
https://blog.evjang.com/2016/11/tutorial-
categorical-variational.html
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What is the problem?

• Real sentence

• Generated
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Disaster ……

. 
RL is difficult to train GAN is difficult to train 

RL+GAN



Tips?

• ScratchGAN

[Cyprien de Masson d'Autume, et 
al., arXiv 2019]
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Tips?

• Reward for Every Generation Step

Discrimi
natorChatbot

En De 0.9

0.1
0.1

You
You  is

You  is  good

Method 2. Discriminator For Partially Decoded Sequences

Method 1. Monte Carlo (MC) Search [Yu, et al., AAAI, 2017]

[Li, et al., EMNLP, 2017]

Method 3. Step-wise evaluation [Tual, Lee, TASLP, 2019][Xu, et al., EMNLP, 
2018][William Fedus, et al., ICLR, 2018]



Text Style Transfer

感謝張瓊之同學提供實驗結果

胃疼 , 沒睡醒 , 各種不舒服→生日快樂 , 睡醒 , 超級舒服

我都想去上班了, 真夠賤的! →我都想去睡了, 真帥的 !

暈死了, 吃燒烤、竟然遇到個變態狂
→哈哈好 ~ , 吃燒烤 ~ 竟然遇到帥狂

我肚子痛的厲害→我生日快樂厲害

• From negative sentence to positive one

[Lee, et al., ICASSP’18]



Source of image: https://openreview.net/forum?id=H1g2NhC5KQ

[Lample, et al., ICLR’19] 





Style Transformer (Text version of StarGAN) 
Source of image: https://arxiv.org/abs/1905.05621

[Ning Dai, et al., ACL’19]
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[Hu, et al., ICML’17]

[Fu, et al., AAAI’17]

[Shen, et al., NIPS’17]



Text Style Transfer 
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style

[Li, et al., NAACL’18]

[Xu, et al., ACL’18]
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Summarization

ROUGE-1 ROUGE-2 ROUGE-L

Supervised 33.2 14.2 30.5

Trivial 21.9 7.7 20.5

Unsupervised
(matched data)

28.1 10.0 25.4

Unsupervised
(no matched data)

27.2 9.1 24.1

English Gigaword (Document title as summary)

• Matched data: using the title of  English Gigaword to train 
Discriminator

• No matched data: using the title of CNN/Diary Mail to 
train Discriminator

[Wang, Lee, 
EMNLP 2018] 



More Unsupervised 
Summarization
• Unsupervised summarization with language prior

• Unsupervised multi-document summarization 

[Chu, et al., 
ICML 2019] 

[Baziotis, et al., 
NAACL 2019] 
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Mapping of Word Embedding 

https://engineering.fb.com/ai-research/unsupervised-machine-translation-a-novel-
approach-to-provide-fast-accurate-translations-for-more-languages/



Mapping of Word Embedding 

魚

兔

跳

游
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𝑊

1 1

[Hartmann, et al., 
NeurIPS’19] 



VecMap [Artetxe, et al., ACL’18]



Unsupervised Translation 

𝐸𝑁𝐴

𝐸𝑁𝐵 𝐷𝐸𝐵

𝐷𝐸𝐴Sentence A Sentence A

Sentence B Sentence B

add noise

add noise

?????

[Lample, et al., ICLR, 2018]

From 𝐸𝑁𝐴 or 𝐸𝑁𝐵D



Unsupervised Translation 

𝐸𝑁𝐴

𝐸𝑁𝐵 𝐷𝐸𝐵

𝐷𝐸𝐴Sentence A Sentence A

Sentence B Sentence B

[Lample, et al., ICLR, 2018]

How are you?

再見再見

How are you?



Unsupervised Translation 

𝐸𝑁𝐴

𝐸𝑁𝐵 𝐷𝐸𝐵

𝐷𝐸𝐴Sentence A Sentence A

Sentence B Sentence B

[Lample, et al., ICLR, 2018]

How are you?

好嗎你好嗎你

How are you?

Start from another unsupervised translation model
(word embedding translation model)

Another
Model

Another
Model



Unsupervised learning 
with 10M sentences

Supervised learning with 
100K sentence pairs

=

supervised

unsupervised

[Lample, et al., ICLR, 2018]



[Lample, et al., NeurIPS’19]

[Lample, et al., EMNLP’18]
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Acoustic Token Discovery



Acoustic Token Discovery

Token 1Token 2 Token 3

Token 1Token 2 Token 4

Token 1Token 4 Token 4 Token 5

Acoustic tokens: chunks of acoustically similar audio segments 
with token IDs

Acoustic tokens can be discovered from audio collection 
without text annotation.



Cluster index 2
Cluster 
index 16

Cluster
index 25

Cluster index 1

2 … 2
ID sequence

K-means

16 25

…

…

Segmental Audio word2vec

𝑧1 𝑧2 𝑧3 𝑧𝑀

…

Acoustic Feature

Audio embedding 
sequence

Generator (v1)

[Wang, et al., ICASSP 2018]

Generator
Lookup Table

Generated phoneme sequence

𝑠𝑖𝑙 …ℎℎ 𝑖ℎ 𝑠𝑖𝑙



Experiment
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(Oracle)
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4620 
(TIMIT)



Approaches
PER

Matched Nonmatched

Supervised

RNN Transducer 17.7 -

Standard HMMs 21.5 -

Completely unsupervised (no label at all)

Generator (v1) 76.0 -

G
e

n
e

ra
to

r 
(v

2
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GAN 48.6 50.0

HMM 30.7 39.5

Iteration 2
GAN 41.0 44.3

HMM 27.0 35.5

Iteration 3
GAN 38.4 44.2

HMM 26.1 33.1

Experimental Results [Liu, et al., INTERSPEECH, 2018]
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Gate Activation Signals (GAS)

Generator

[Wang, et al., INTERSPEECH 2017]

Inspired From [Yeh, et al., ICLR 2019]
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The progress of supervised learning 

A
cc

u
ra

cy

Unsupervised learning today (2019) is as good 
as supervised learning 30 years ago.

The image is modified from: Phone recognition on the TIMIT database Lopes, C. and Perdigão, F., 2011. 
Speech Technologies, Vol 1, pp. 285--302.
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Semi-supervised Speech Recognition 

Machine
Transcriptions

text 

audio

Using 100 hours pairs annotated audio from Librispeech, 
and text without audio

21.7% WER → 18.7% WER

[Liu, et al., ICASSP 2019]

Manual 
Transcriptions

How are you.

He think it’s…

Thanks for…

I am fine ...
Everything will …



Shared Latent Space

Discriminator

Encoder
(Audio)

Encoder 
(Text)

Text

Text
or 

Audio
?

dog
=dog

• Initial attempt [Chen, et al., SLT, 2018]

• 76.3% WER on Librispeech [Chung, et al., NIPS 2018] 

• WSJ with 2.5 hours paired data: 64.6% WER

• LJ speech with 20 mins paired data: 11.7% PER
[Jennifer Drexler, et al., SLT 2018] 

[Ren, et al., ICML 2019]

• Unsupervised speech translation is possible [Chung, et al., ICASSP 2019] 
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